4
MICRO PROGRAMMED CONTROL

L

@ Control Memory

@ Introduction
® Micro Programs Example

® Address Sequencing

4.1 INTRODUCTION

This is the last unit of the block on CPU organizaticn. We have already discussed in the earlier
units about the instruction sets, Register set, ALU organization and control unit
organization. In this unit, we will discuss about the micro-programmed control unit, which are
quite popular in modermn computers because of flexibility in designing. We will start the discussion
with several definitions about the unit followed by Wilkes Control unit. We will also discussed
about microinstructions and a simple structure of such a unit.

4.2 CONTROL MEMORY

The function of the control unit in a digital computer is to initiate sequences microoperations.
The number of differcnt types of microoperations that are available in a given system is finite. The
complexity of the digital system is derived from the number of sequences of microoperations that
are performed. When the control signals are generated by hardware using conventional logic design
techniques, the control unit is said to be hardwired. Microprogramming is a second alternative for
designing the control unit of a digital computer. The principle of microprogramming is an elegant
and systematic method for controlling the microoperation sequences in a digital computer.

. The control function that specifies a microoperation is a binary variable. When it is in one
binary state, the correspending microoperation is executed. A control variable in the opposite binary
state does not change the state of the registers in the system. The active state of a control variable
may be cither the 1 state or the 0 state, depending on the application. In a bus-organized system, the
control signals that specify microoperations are groups of bits that select the Paths in multiplexers,
decoders, and arithmetic logic units.

H.:m nwzqo_ unit initiates a series of sequential steps of microoperations. During any given time,
nw_‘a_:.a_nnoomma:o:w are to be initiated, while others remain idle. The control variables at any
given time can be represented by a string of I's and O's called a control word. As such, control
words can be programmed to perform various operations on the components of the system. A control
unit whose binary control variables are stored in memory is called a micreprogrammed control
unit. Each word in control memory contains within it a microinstruction. The microinstruction

Scanned by CamScanner

62 Computer System Organization and Architecture

specifies one or more microoperation for the system. A sequence of microinstructions no:mﬁ.:.:c.uw
a microprogram. Since alterations of the microprogram arc not needed once the control unit is in
operation, the control memory can be a read-only memory (ROM) The content % E,m words in
ROM are fixed and cannot be altered by simple programming since no writing capability is available
,in the ROM. ROM words are made permanent during the hardware production of the unit. The use of
amicroprogram involves placing all control variables in words of ROM for by the control unit through

successive read operations. The content of the word in ROM at a given address specifies a
microinstruction.

A more advanced development known as dynamic microprograming permits a
microprogram to be loaded initially from an auxiliary memory such as a magnetic disk. Control units
that use dynamic microprogramming employ a writable control memory. This type of memory can be

used for writing (to change the microprogram) but is used mostly for reading/A memory that is part
of a control unit-is referred to as a control memory, TV,

A computer that employs a microprogrammed control unit will have two separate memories: a
main memory and a control memory. The main memory is available to the user for storing the
programs. The contents of main memory may alter when the data are manipulated and every time
that the program is changed. The user's program in main memory consists of machine instructions
and data. In contrast, the control memory holds a fixed microprogram that cannot be altered by the
c.nnwmmosm_ user. The microprogram consists of microinstructions that specify various internal control
m_m.sm_m for execution of register microoperations. Each machine instruction initiates a series of
microinstructions in control memory. These microinstructions generate the microoperations to
fetch the instruction from main memory; to evaluate the effective address, to execute the

operation specified by the instruction, and to return control to the fetch phase in order to repeat the
cycle for the next instruction.

Extemal

input

I Next
address Control Control Control . Control
generator [address i —{ memory [—» data word
(sequencer) register (ROM) register

Next-address information

Microprogrammed control organization.
Fig. 4.1

The general configuration of a microprogrammed control unit is demonstrated in the
.Eonr diagram of Fig. The control memory is assumed to be a ROM, within which all control
information is permanently stored. The control memory address register specifies the address
of the .BFSEmHEn:o:. and the control data register holds the microinstruction read from memory.
The microinstruction contains a control word that specifies one or more micro-operations for the
data processor. Once these operations are executed, the control must determine the next address.
The location of the next microinstruction may be the one next in sequence, or it may be located
mo.:_mf:m_d m_.mm in the control memory. For this reason it is necessary to use some bits of the present
microinstruction to control the generation of the address of the next microinstruction. The next
address may also be a function of external input conditions. While the microoperatiouns are being
executed, the next address is computed in the next address generator circuit and then transferred
into the control address register to read the next microinstruction. Thus a microinstruction

Micro Programmed Control

. N 63

contains bits for initiating microoperations in the data processor part and bits that determine the
address sequcnce for the control memory.

The next address generator is sometimes called a microprogram sequencer, as it determines
the address sequence that is read from control memory. The address of the next
microinstruction can be specified in several ways, depending on the sequencer inputs. Typical
functions of a microprogram sequencer are incrementing the control address register by one,
loading into the control address register an address from control memory, transfernng an external
address, or loading an initial address to start the control cperations.

The control data register holds the present microinstruction while the next address 1s computed
and read from memory. The data register is sometimes called a pipeline register. It allows the
execution of the microoperations specified by the control word simultaneously with the generation of
the next microinstruction. This configuration requires a two-phase clock, with one clock applied to
the address register and the other to the data register.

The system can operate without the control data register by applying a single-phase clock to the
address register. The control word and next-address information are taken directly from the
control memory. It must be realized that a ROM operates as a combinational circuit, with the address
value as the input and the corresponding word as the output. The content of the specified word in
ROM remains in the output wires as long as its address value remains in the address register. No read
signal is needed as in a random-access memory. Each clock pulse will execute the microoperations
specified by the control word and also transfer a new address to the control address register. In the
example that follows we assume a single-phase clock and therefore we do not use a control data
register. In this way the address register is the only component in the control system that receives
clock pulses. The other two components: the sequencer and the control memory are
combinational circuits and do not need a clock.

The main advantage of the microprogrammed control is the fact that once the hardware
configuration is established, there should be no need for further hardware or wiring changes. If we
want to establish a different control sequence for the system, all we need to do is specify a different
set of microinstructions for contral memory. The hardware configuration should not be changed for
different operations; the only thing that must be changed is the microprogram residing in control
memory.

It should be mentioned that most computers based on the reduced instruction set

computer (RISC) architecture concept use hardwired control rather than a control memory
with a microprogram.

4.3 ADDRESS SEQUENCING

Microinstructions are stored in control memory in groups, with each group 1 specifying a
routine. Each computer instruction has its own microprogram | routine in control memory to
generate the microoperations that execute the instruction. The hardware that controls the address
sequencing of the control memory must be capable of sequencing the mucroinstructions within a
routine and be able to branch from one routine to another. To appreciate the address sequencing
in a microprogram control unit, let us enumerate the steps that the control must undergo dunng the
execution of a single computer instruction,

An initial address is loaded into the control address register when power is turned on in the
computer. This address is usually the address of the first microinstruction that activates the
instruction fetch routine. The fetch routine may be sequenced by incrementing the control address

Scanned by CamScanner

.

Computer System Organization and Architecture

i > instruction is
register through the rest of its microinstructions. At the end of the fetch routine, the in on is in
the instruction register of the computcr.

’ S hrough ther
[he control memory next must got . : ¢ ! e .
the operand. A machine instruction may have bits that specify various addressing modes, such as

indirect address and index registers. The cffective um%.mmm .noB_u_._.E:o:a—.c::ﬂo :ﬁ_mmmw_ﬂw_zﬁoao%
can be reached through a branch microinstruction, which is 8:9:.0:0. ont n_ s A mode
EacI:m::::n:o:.E:m:Eno:.oE?npm%mmmnoav:s:on routine is completed, the address of

the operand is available in the memory address register.

The next step is to generate the microoperations t
memory. The microoperation steps to be generated in processo
code part of the instruction. Each instruction has its own microp £
location of control memory. The transformation from the instruction coc
control memory where the routine is located is referred to as a mapping
procedure is a rule that transforms the instructior. code into a control memory address. Once the
required routine is reached, the microinstructions that execute the instruction may be mnn:.o:nng by
incrementing the control address register, but sometimes the sequence of microoperations will
depend on values of certain status bits in processor registers. Microprograms that employ subroutines
will require an external register for storing the return address. Return addresses cannot be stored in
ROM because the unit has no writing capability.

When the execution of the instruction is completed, control must return to the fetch routine.
This is accomplished by executing an unconditional branch microinstruction to the first address
of the fetch routine. In summary, the address sequencing capabilities required in a control
memory are :

1. Incrementing of the control address register.

2. Unconditional branch or conditional branch, depending on status bit conditions.
3. A mapping process from the bits of the instruction to an address for control memory.
4. A facility {or subroutine call and return.

Figure shows a block diagram of a control memory and the associated hardware needed for
selecting the next microinstruction address. The microinstruction in control memory contains a sct of
bits to initiate microoperations in computer registers and other bits to specify the method by which
the next address is obtained. The diagram shows four different paths from which the control
address register (CAR) rcceives the address. The incrementer increments the content of the
control address register by one, to select the next microinstruction in sequence. Branching is achieved
by specifying the branch address in one of the fields of the microinstruction. Conditional
branching is obtained by using part of the microinstruction to select a specific status bit in order
to determine its condition. An external address is transferred into control memory via a mapping
logic circuit. The return address for a subroutine is stored in a special register whose value is then
used when the microprogram wishes to return from the subroutine.

outine that determines the cffective address of

hat execute the instruction fetched from
r registers depend on the operation
rogram routine stored in a given
ode bits to an address in
process. A mapping

4.3.1 Conditional Branching

The branch logic of Fig. provides decision-making capabilities in the control unit. The status
conditions are spccial bits in the system that provide parameter information such as the carry-out of
an adder, the sign bit of a number, the mode bits of an instruction, and input or output status
conditions. Information in these bits can be tested and actions initiated based on their condition:

Micro Programmed Controlc..ccccoeiueieeiiie i

65

whether their value is 1 or 0. The status bits, together with the field in the microinstruction that
specifies a branch address, control the conditional branch decisions generated in the branch

logic.

The branch logic hardware may be implemented in a variety of ways. The simplest way is to

test the specificd condition and branch to the indicated address if the condition is met; otherwise, the
address register is incremented.

_ Instruction code L
Mapping
logic
Status Branch MUX |
bits | logic select s Subroutine

Y

Control address register
Clock——> (CAR) 3

Incremmentar

Control memory

Select a status _

bit
Microoperations
Branch address

Selection of address for control memory.
Fig.4.2

This can be implemented with a multiplexer. Suppose that there are eight status bit conditions in
the system. Three bits in the microinstruction are used specify any one of eight status bit conditions.
These three bits provide the slection variables for the multiplexer. If the selected status bitis in the
1 state, the output of the multiplexer is 1; otherwise it is 0. A 1 output in the multiplexer generates
a control signal to transfer the branch address from the microinstruction into the control address
register. A 0 output in the multiplexer causes the address register to be incremented. In this
configuration, the Microprogram follows one of two possible paths, depending on the value of
selected status bit.

An unconditional branch microinstruction can be implemented by loading the branch
address from control memory into the control address register. This can be accomplished by fixing
the value of one status bit at the input of the multiplexer, so it is always equal to 1. A reference to this

Scanned by CamScanner

subroutine can be called from an

Computer System Organization and Arch itectyrg

ddress to be loaded ;
bit by the status bit select lines from control memory causes the branch a ed ingg

the control address register unconditionally.

4.3.2 Mapping of Instruction

sorat i ifies a branch to the first worq ;
A special type of branch exists when a S_Qosmn,:nnmo: mvmﬂmm..nmc: is located. The ﬂ“ “
Soge0 memony irmnw . 5“—.” nﬂﬂ—.@ﬂ”ﬁ“ﬂ“ﬂhﬂnoﬂmm&ﬂ of the instruction. For mquEm. a

i this type of branch are the bits in the : I : .

W.M_M“.HQ imm.m simple instruction format as shown in Fig. has an operation code of Mocm wmm f.er_nr
i istinct i ions. Assume further that the control memory has 128 words,

can specify up to 16 distinct instructions. } < micToRegranTirOntin
requiring an address of seven bits. For each operation n@nm there exists a e e
in control memory that executes the instruction, One simple Em_uu:_m _u...on.nmm) ,;. nverts m:m
4-bit operation code to a 7-bit address for control memory is m:osj in m_w.mh. + This mapping
consists of placing a 0 in the most significant bit of the address, transferring .Em our operation code
bits, and clearing the two least significant bits of the control m&.n_nnmm register. This v._‘os%m for
each computer instruction a microprogram routine with a capacity of four microinstructions. If E.n
routine needs more than four microinstructions, it can use addresses 1000000 through 1111111, [fjt
uses fewer than four microinstructions, the unused memory locations would be available for other

routines.

One can extend this concept to a more general mapping rule by using a ROM to specify the
mapping function. In this configuration, the bits of the instruction specify the address of a mapping
ROM. The contents of the mapping ROM give the bits for the control address register. In this
way the microprogram routine that executes the instruction can be placed in any desired location in
control memory. The mapping concept provides flexibility for adding instructions for control
memory as the need arises.

Opcode

Computer instruction : 1011 Address _

Mappingbits: 0 |x x x x| 0 0

Microinstruction bits : _o 10110 o_

Mapping from Instruction code to microinstruction address.
Fig. 4.3

The mapping function is sometimes implemented by means of an integrated circuit called
programmable logic device or PLD. A PLD is similar to ROM in concept except that it uses
AND and OR gates with internal electronic fuses. The interconnection between inputs, AND gates,
OR gates, and output can be programmed as in ROM. A mapping function that can be expressed in
terms of Boolean expressions can be implemented conveniently with a PLD

4.3.3 Subroutines

Subroutines arc programs that are used by other routines to accoirmr particular task, A

r ny point SE_.F the main body of the microprogram. Frequently,

Micro Programmed Control ..o i S 67

common to all memory reference instructions. This sequence could b a subroutine that is called from
within many other routines to execute the effective address computation. . s
Microprograms that use subroutines must have a provision for stering the F%MH Mﬁ«wovm
during a subroutine call and restoring the address during a EUSEMDMHBEGM Lhis may b
accomplished by placing the incremented output from the noanwou mw nmwonwsn eainter
subroutine register and branching to Sm. beginning of the subroutine. T % uhu_g e T e
can then become the source for transferring the address for the return to the mm:_N_n e rogisters in a
way to structure a register file that stores addresses for subroutines is to org
last-in, first-out (LIFO) stack.

4.4 MICROPROGRAM EXAMPLE e
Once the configuration of a computer and its microprogrammed nm:qﬁw_ :oMMGMnS:.o: ;.
the designer's task is to generate the microcode for .nrw control Em—.doa. &.mnn,mn:.:.mum language
called microprogramming and is a process m:s;m.a to convention . m:._u ehow how it i5
programming. To appreciate a process, we present here a simple Em_.nm_ noJﬂc&H» e,
microprogrammed. The computer used here is similar but not identical to C

4.4.1 Computer Configuration . - .
The block diagram of the computer is shown in Fig. It consists of memory units: a main memory

T MUX
10 0
Address Memory
2048 x 16
10 0
[rc |
MUX
6 0 6 0 15 0
SAR CAR DR _
Control memory Anthmetic
128 x 20 logic and
shift unit
Control unit
15]
[0 |

Computer hardware configuration.
Fig. 4.4

Scanned by CamScanner

... Computer System Organization and Architecture

68

for storing instructions and data, and a control memory for storing :E‘E_.Q%Sm-.asl. _.9.5 registers
are associated with the processor unit and two with the control unit. The processor register are
Program Counter PC, Address Register AR, Data ?ﬂum»nn u-w.. and >nn—.:==_p3..
Register AC. The tunction of these registers is similar to the basic computer :._:9:_8; _.= Chap. 5.
The control unit has a Control Address Register CAR and a subroutine register SBR. The control
memory and its registers are organized as a microprogrammed control unit, as shown.

The transfer of information among the registers in the processor is done through multiplexers
rather than a common bus. DR can receive information from AC, PC, or memory. AR can receive
information from PC or DR. PC can receive information only from AR. The arithmetic, logic, and shift
unit per forms microoperations with data from AC and DR and places the result in AC, Note that
memory receives its address from AR. Input data written to memory come from DR, and data read
from memory can go only to DR.

The computer instruction format is shown in the Fig. It consists of three ficlds: a 1-bit field for
indirect addressing symbolized by 1, a 4-bit operation code (opcode), and an 11-bit address field.
Figure lists four of the 16 possible memory-reference instructions. The ADD instruction adds
the content of the operand found in the effective address to the content of AC. The BRANCH
instruction causes a branch to the effective address if the operand in AC is negative. The program
proceeds with the next consecutive instruction if AQ is negative. The AC is negative if its sign bit (the
bit in the leftmos position of the register) is a 1. The STORE instruction transfers the content of AC
into the memory word specified by the effective address. The EXCHANGE instruction swaps the
data between AC and the memory word specified by the effective address.

1t will be shown subsequently that each computer instruction must be microprogrammed. In
.order not to complicate the microprogramming example, only four instructions arc considered here.
It should be realized that 12 other instructions can be included and each instruction must be
microprogrammed by the procedure outlined below.

4.4.2 Microinstruction Format

Inc microinstruction format for the control memory is shown in Fig. 4.6. The 20 bits of
:..a microinstruction arc divided into four functional parts. The three fields Fl, F2, and I3 specily
miciooperations for the computers.
Computer instructions
13 14 11 10 0
_ _ _Ovncp_r. ?E:..uu

(a) Instruction format

Symbol Opcode Description

ADD 0000 AC « AC + M (EA)
BRANCIH . 0001 If (AC < 0) then (PC «- EA)
STORE 0010 M (EA) « AC

FXCHANGL 0011 AC « M (EA), M (EA) « AC

12A 15 the effective address

Micro Programmed Control B e SRS N 69

(b) Four computer instructions
3 3 3 2

n [e [m cw | o o]

1, F2, F3 : Microoperation fields

[=]
4

CD : Condition for branching
BR : Branch ficld
AD : Address field

Microlnstruction code format (20 bits)
Fig. 45

The CD field selects status bit conditions. The BR field specifies the type of branch to be used. The
AD ficld contains a branch address. The address field 1s seven bits wide, since the control memory has
128 = 27 words.

The microoperations are subdivided into three ficlds of three bits each. The three bits in cach
field are encoded to speaify seven distinet microoperations as histed in Table 4.1. This gives a total of
21 microoperations. No more than three microoperations can be chosen for a micromstruction, one
from each ficld. If fewer than three microoperations are used, one or more of the fields will use the
binary code 000 for no operation. As an illustration, a microinstruction can speciry two simultancous
microoperations from F2 and F3 and none from Fl.

DR « M [AR] with F2 = 100

and PC « PC+ 1 with F3 = 101

The nine bits of the microoperation fields will then be 000 100 101, It is important to realize that
two or more conflicting microoperations cannot be specified simultancously. For example, a
microoperation field 010 001 000 has no meaning because it specifics the operations to clecarACto 0
and subtract DR from AC at the same time.

Each microoperation in Table 4-1 is defined with a register transfer statement and is assigned
a symbol for use in a symbolic microprogram. All transfer-type microoperations symbals use five
letters. The first two letters designate the source register, the third letter s always a T, and the last
two letters designate the destination register. For example, the microoperation that specities the
transfer AC DR (Fl = 100) has the symbol DRTAC, which stands for a transfer from DR to AC.

The CD (condition) ficld consists of two bits which are encoded to specify four status bit
conditions as listed in Table 7-1. The first condition is always a 1, so that a reference to CD = 00 (o1
the symbol U) will always {ind the condition to be true. When this condition is used in conjuncuion
with the BR (branch) field, it provides an unconditional branch operauon. The indirect bit Lis
available from bit 15 of DR after an instruction is read from memory. The sign bit of AC provides
the next status bit. The zero value, symbolized by Z, is a binary variabie whose value is equal to 1 if
all the bits in AC arc equal to zero. We will use the symbals U, 1, S, and Z for the four status bits when
we write microprograms in symbolic form.

The BR (branch) ficld consists of two bits, Itis used, in conjunction with the address field AD, to
choose the address of the next microinstruction. As shown in Table 4.1, when BR - 00, the control
performs a jump (JMP) operation (whichiis similar to abranch), and when BR = 01, 1t pertorms &
call to subroutine (CALL) operation. The two operations are identical except that a call
microinstruction stores the return address in the subroutine register SBR. The jump and call

Scanned by CamScanner

70 S SRRSO o ops . Computer System Organization and Architecty,,,
e

operations depend on the value of the CD field. If the status bit condition specified in the CD fie]q ;
equal 1o 1, the next address in the AD field is transferred to the control address register n.i_m

Otherwise, CAR is incremented by 1.

I Microoperation Symbol
000 None NoP
001 AC « AC + DR ADD
010 AC 0 CLRAC
on AC « AC +1 INCAC
100 AC « DR DRTAC
101 AR « DR (0-10) DRTAR
110 AR «PC PCTAR
111 M[AR] « DR WRITE
12 Microoperation Symbol
000 None NOP
001 AC « AC - DR SuB
010 AC « AC v DR OR
011 AC « AC A DR AND
100 DR « M[AR] READ
101 DR « AC ACTDR
110 DR « DR +1 INCDR
111 DR (0-10) «- PC PCTDR
2 Microoperation Symbol
000 None NOP
001 AC « AC ® DR XOR
010 AC « AC coM
011 AC «shl AC SHL
100 PC « shr AC SHR
101 PC«PC+1 INCPC
110 PC « AR ARTPC
111 Reserved
M% Condition Symbol Comments
N %xswwm“n 1 _C Unconditional branch
= Joes : :._&32 address bit
3 e ; Sign bit of AC
Zero value in AC

.71

Micro Programmed Control ...

BR Symbol Function

00 JMP CAR « AD if condition = 1

CAR « CAR + 1 if condition = 0

CAR « AD SBR «CAR + 1 if condition = 1

01 CALL
CAR « CAR +1if condition = 0
10 RET CAR +- SRR (Return from subroutine)
11 MAP [Tuluu.lcxn:IH&U.ESL.@VTo

Table 4.1

The return from subroutine is accomplished with a BR field equal to 10. This causcs the
transfer of the return address from SBR to CAR. The mapping from the operation code bits of the
instruction to an address for CAR is accomplished when the BR field is equal to 11. This mapping is as
depicted in Fig. The bits of the operation code are in DR(11-14) after an instruction is read from
memory. Note that the last two conditions in the BR field are independent of the values in the CD and

AD fields.

4.4.3 Symbolic Microinstructions

The symbols defined in below Table can be used to specify microinstructions in symbolic form. A

symbolic microprogram can be translated into its binary equivalent by means of an assembler. A
microprogram assembler is similar in concept to a conventional computer assembler as defined in
Sec. 6-3. The simplest and most straightforward way to formulate an assembly language for a
microprogram is to define symbols for each field of the microinstruction and to give users the

capability for dcfining their own symbolic addresses.
Each line of the assembly language microprogram defines a symbolic
symbolic microinstruction is divided into five fields: label, microoperations, CD, BR, a

fields specify the following information.
1. The label field may be empty or it may specify a symbolic address. A label is terminated with a

colon (2).

2. The microoperation
those defined in Table. There may be no more t
used when the microinstruction has no microoperations.
to nine zeros.

3. The CD field has one of the letters U, I, S, or Z.

4. The BR field contains one of the four symbols defined in Table.

5. The AD field specifies a value for the address field of the microinstructinn in onc of three

microinstruction. Each
nd AD. The

s field consists of one, two, or three symbols, separated by commas, from
han one symbal from each F field. The NOP symbol is
This will be translated by the assembler

possible ways:
(a) With a symbolic address, which must also appear as a label.

(b) With the symbol NEXT to designate the next address in sequence.
(c) When the BR field contains a RET or MAP symbol, the AD field is left empty and is

converted to seven zeros by the assembler.
" We will use also the pscudoinstruction ORG to define the origin address, of a microprogram

Scanned by CamScanner

79 . Computer System Organization and >Hr=mQEm

routine. Thus the symbol ORG 64 inform the assembler to place the next Jﬁmw_%ww_dn:oa in contro
memory at decimal address 64, which is equivalent to the binary address .

4.4.4 The Fetch Routine

The control memory has 128 words, and each word contains 20 bits Tn microprogram the
control memory, it is necessary to determine the bit values of each of the 128 words. The first 64
words (addresses 0 to 63) are to be occupied by the routines for the 16 instructions. ,.25 ._mmn 64 words
may be used for any other purpose. A convenient starting location for the fetch routine is address 64,
The microinstructions nceded for the fetch routine are

AR « PC

DR « M[AR], PC« PC + 1

AR « DR(0-10), CAR(2-5) « DR(ll-14), G4R(0,1,6) « 0

The address of the instruction is transferred from PC to AR and the instruction is then read from
memory into DR. Since no instruction register is available, the instruction code remains in DR. The
address part is transferred to AR and then control is transferred to one of 16 routines by mapping
the operation cod' part of the instruction from DR into CAR.

The fetch routine needs three microinstructions, which are control memory at addresses 64, 65,

g:nom.cmmzmﬂrmmmmmn&; language conventions defined previously, we can write the symbolic
microprogram" the fetch routine as follows:

4 ORG 64
FETCH: PCTAR U JMP NEXT
READ,INCPC U JMP NEXT
DRTAR u MAP

The translation of the symbolic microprogram to binary. Following binary microprogram.
The bit values are obtained from the three microinstructions.

Binary Address F1 F2 F3 CD BR AD
1000000 110 000 000 00 00 1000001
1000001 000 100 101 00 00 1000010
1000010 101 000 000 00 11 0000000

Table 4.2

The three microinstructions that constitute the fetch routine have been listed in three different
representations. The register transfer representation shows the internal re
that each microinstruction implements. The symbolic representation is useful for writing
microprograms in an assembly language format. The binary representation is the actual internal
content that must be stored in corftrol mem

ory. It is customary to write microprograms in symbolic
form and then use an assembler program to obtain a translation to binary.

gister transfer operations

4.4.5 Symbolic Microprogram

The execution of the third (MAP) microinstruction in the fetch routine results in a branch to
address Oxxxx0O0, where xxxx are the four bits of the operation code. For example, if the instruction

is an ADD instruction whose operation code is 0000, the MAP microinstruction will transfer to CAR

Micro Programmed Control e

the address 0000000, which is the start address for th

first address for the BRANCH and STORE routines are 0 0001 00 (decimal 4) and 0 0010 00 (decimal
8), respectively. The first address for the other 13 routines are at address values 12, 16, 20,..., 60.
This gives four words in control memory for each routine,

In each routine we must provide microinstructions for evaluating the effective address and for
executing the instruction. The indirect address mode is associated with all memory-reference
instructions. A saving in the number of control memory words may be achieved if the
microinstructions for the indirect address are stored as a subroutine. This subroutine, mv3¢o~HNwa by
INDRCT, is located right after the fetch routine, as shown in Table .?u. ._.:n table also m:osmm&n
&éwo:hamnnonamas for the fetch routine and the microinstruction routines that execute four
omputer instructions.
i Mo see how the transfer and return from the indirect subroutine occurs, assume that the MAP
microinstruction at the end of the fetch routine caused a branch to maaﬁmmm oxs&mnm the MUU Smﬂ,ww
is stored. The first microinstruction in the ADD routine calls subroutine Hv.cmgwnoaﬁmﬁ.wowmmmv ;
status bit 1. If J = 1, a branch to INDRCT occurs and the return address mmaamnmm Enc_sm.
stored in the subroutine register SBR. The INDRCT subroutine has two microinstruc :

INDRCT: READ u JMP NEXT

DRTAR U RET

e ADD routine in control memory. The

Symbolic Microprogram (Partial)

Label Microoperations CD BR AD
ORG 0

ADD : NOP I CALL INDRCT

. READ U JMP NEXT

ADD U JMP FETCH
ORG 4

BRANCH : NOP S JMP OVER
NOP u JMP FETCH

OVER : NOP I CALL INDRCT
ARTPC U JMP FETCH
ORG 8 .

STORE : NOP 1 CALL Vﬂmg
ACTDR u JMP NEXT
WRITE u JMP FETCH
ORG 12 .

EXCHANGE : |NOP I CALL _.‘../.UWQ_.
READ U JMP NEXT
ACTDR, DRTAC u JMP Zm../.J.
WRITE U JMP FETCH

Scanned by CamScanner

Computer System Organization u:qbagmnsm Micro Programmed Control 75

Note that address 3 has no equivalent in the symbolic microprogram since the ADD routine has
only three microinstructions at addresses 0,1, and 2. The next routine starts at address 4. Even
though address 3 is not used, some binary value must be specified for each word in control memory.
we could have specified all O's in the word since this location will never be used, However, 1f some
unforeseen error occurs, or if a noise signal sets CAR to the value of 3, it will be wise to jump to
address 64, which is the beginning of the fetch routine.

Jable 43 Table Binary Microprogram for Control Memory (Partial)
able 4. — - X
: f the instruction as the o Routine Addres Binary Microinstruction
Remember that an indirect address considers the maaummmmvwﬂw erand. Thercfore. the _”%_.mmm Micr - : —
where the effective address is stored rather than SW ma.n_«mmm of the mv e :.u AR The mmmn—. »ﬂo&. Decimal | Binary F1 F2 | F3 | cD _
has to be accessed to get the effective address, which is then transter! ; T from 000 000 01 |01 1000011
SBR to CAR, thus returning to the seconq ADD 0 0000000 |000 {
Subroutine (RET) transfers the address from 4 n - 00 0000010
microinstruction of the ADD routine. o) ¢t add 1 0000001 (000 100 000 o
The execution of the ADD instruction is nm“ﬂmn out by 9% ““Mnmﬂmmﬂwnm_wwwbma M . MM”MW_.”MMON. 2 0000010 |001 000 000 00 100000
The first microinstruction reads the operand from memo: . ¢ n - 1000000
performs an add microoperation with the content of DR and AC and then jumps back to the 3 0000011 (000 000 o A A
beginning of the fetch routine.) . BRANCH 4 0000100 |000 000 000 01 00 ooc
The BRANCH instruction should cause a branch to the effective address if AC < 0. The AC will be 00 loo 1000000
ich i i bei 1. Th 5 0000101 |000 000 000
less than zero if its sign is negative, which is detected from status bit S being a 1. The BRANCH | —
routine in Table 4.3 starts by checking the value of S. If S is equal to 0, no branch occurs and the next 6 0000110 |000 000 000 01 __3
microinstruction causes a jump back to the fetch routine without altering the nonmm-:.n.m PC. r. Sis . oooo111 oo 000 110 00 |00 1000000
equal to 1, the first JMP microinstruction transfers control to location OVER. The microinstruction at ,E 1000011
this location calls the INDRCT subroutine if / = 1. The effective address is then transfcircd from AR 8 0001000 |000 000 000 01 ﬂ
to PC and the microprogram jumps back to the fetch routne. 9 0001001 |000 101 000 00 00 0001010
The STORE routine again uses the INDRCT subroutine if / = 1 The content of AC is 000
. : 00 00 1000
transferred into DR. A memory write operation is initiated to store the content of DR in a location 10 0001010 |111 000 000
specified by the effective address in AR. 11 0001011 |000 000 000 00 00 1000000
The EXCHANGE routine reads the operand from the effective address and places it in DR. The EXCHANGE 12 0001100 |000 000 000 0 01 1000011
contents of DR and AC are interchanged in the third microinstruction. This interchange is possible 00 0001110
when the registers are of the edge-triggered type. The original content of AC that is now in DR is 13 0001101 {001 000 000 00 0
stored back in memory. 14 0001110 |100 101 000 00 00 0001111
Note that Table 4.3 contains a partial list of the microprogram. Only four out of 16 possible
] e K : 00 100000
computer instructions have been microprogrammed. Also, control memory words at locations 15 ooo11i1 11 e s - 1
69 to 127 have not been used. Instructions such as multiply, divide, and others that require a long FETCH 64 1000000 |110 000 000 00 00 1000001
sequence of micro-operations will need more than four microinstructions for their execution. Control 1000010
memory words 69 to 127 can be used for this purpose. 65 1000001 [000 100 101 00 00
4.4.6 Basic Microprogram . 1000010101 o0 o ® H i
4. 00
- . . . 67 1000011 {000 100 000 00 00 10001
The symbolic microprogram Is a convenient form for writing microprograms in a way that people INDRCT 10 0000020
can :wm.m ma.m understand. But this is not the way that the microprogram is stored in memory. The 68 1000100 101 000 ?oo il
mS:vosn.B_edvmomEE must .cm .:m:m_mnmn_ to binary either by means of an assembler program or by Table 4.4
the user if the microprogram is simple enough as in this example. . listed in Tabl ifies the word content of the control memory. When
3 i . o . i in Table specifie v e lemory.
The mn:_ﬁzmzn c_.st form o.m the microprogram is listed in Table. The addresses for control a w%.hnmwﬁwnﬂ ﬂp_‘nmmmﬂwhﬂ__ ”.ﬁmioﬂ. the Sw_nnwoh—dm_da binary list provides the truth table for
memory are given in both decimal and binary. The binary content of each microinstruction is iy

. 5 N . . . N . . siae k for the
derived from the symbols and their equivalent binary values as defined in Table. fabricating the unit. This fabrication is a hardware process and consists of creating a mas

Scanned by CamScanner

Computer System Organization and Architecty,

are fixed once the internal [ing

¢ ROM is made of IC packages that can be removed jf
o modify the instruction set of the computer, jt jg
d mask a new ROM. The old one can be removeq

i oM
ROM so as to produce the I's and 0's for cach word. The bits of R

are fused during the hardware production. Th
necessary and replaced by other packages. T
necessary fo generate a new microprogram an
and the new onc inserted in its place.

If a writable control memory is employed, the ROM is re A simply by e
employing a RAM for the control memory is that the microprogram can be altered simply by writing 5

new pattern of I's and Os without resorting to hardware procedures. A Eq_mmc___m wosﬁ_ﬂo_ memory
possesses the flexibility of choosing the instruction set of a computer dynamically by changing the
microprogram under processor control. However, most microprogrammed systems use a —53 for
the control memory because it is cheaper and faster than a RAM and also to prevent the occasional

user from changing the architecture of the system.

placed by a RAM-The advantage of

4.4.7 Design of Control Unit

The bits of the microinstruction are usually divided into fields, with each field defining a
distinct, separate function. The various fields encountered in instruction formats provide control bits
to initiate microoperations in the system, special bits to specify the way that the next address is to be
evaluated, and an address field for branching. The number of control bits that initiate
microoperations can be reduced by grouping mutually exclusive variables into fields and encoding
the k bits in each field to provide 2k microoperations. Each field requires a decoder to produce the
corresponding control signals. This method reduces the size of the microinstruction bits but requires
additional hardware external to the control memory. It also increases the delay time of the control
signals because they must propagate through the decoding circuits.

The encoding of control bits was demonstrated in the programming example of the preceding
section. The nine bits of the microoperation field are divided into three subfields of three bits each.
The control memory output of each subfield must be decoded to provide the distinct
microoperations. The outputs of the decoders are connected to the appropriate inputs in the
processor unit.

Figure shows the three decoders and some of the connections that must be made from their
outputs. Each of the threc fields of the microinstruction presently available in the output of control
memory are decoded with a 3x8 decoder to provide eight outputs. Each of these outputs must be
connected to the proper circuit to initiate the corresponding microoperation as specified in Table
7-1. For example, when F1 = 101 (binary 5), the next clock pulse transition transfers the content of
DR(0-10) to AR (symbolized by DRTAR in Table 7-1). Similarly, when Fl = 110 (binary 6) there is a
transfer from PC to AR (symbolized by PCTAR). As shown in Fig., outputs 5 and 6 of decoder Fl are
connected to the load input of AR so that when either one of these outputs is active, information from
the multiplexers is transferred to AR. The multiplexers select the information from DR when
output 5 is active and from PC when output 5 is inactive. The transfer into AR occurs with a clock
pulse transition only when output 5 or output 6 of the decoder are active. The other outputs of the
decoders that initiate transfers between registers must be connected in a similar fashion.

The arithmetic logic shift unit can be designed. Instead of using gates to generate the
control signals marked by the symbols AND, ADD, and DR in Fig., these inputs will now come from
the outputs of the decoders associated with the symbols AND, ADD, and DRTAC, respectively, as
shown in Fig. The other outputs of the decoders that are associated with an AC operation must also be
connected to the arithmetic logic sti unit in a similar fashion.

Micro Programmed Controlccccouuiin. 77

F1 F2 F3

Ll | | | |

3 x 8 decader 3 = 8 decoder 3 = 8 decoder

76543210 76543210 76543210
' bl RERIERE RERRRER
AND
ADD Anthmetic
DRTAC logic shift
unit
From From
PC DR (0-10)
m M Sell _ ﬁ Load “
5 > elect AC 4
a o 0 1
Select Multiplexers

d

Decoding of microoperation fields
Fig. 4.6

4.4.8 Microprogram Sequencer

The basic components of a microprogrammed control unit are the | memory and the
circuits that select the next address. The address selection part is called a microprogram
sequencer. A microprogram sequencer can be structed with digital functions to suit a particular
application. However Just as there are large ROM units available in integrated circuit packages, so
are general-purpose sequencers suited for the construction of microprogram control units. To
guarantec a wide range of acceptability, an integrated sequencer must provide an internal
organization that can be adapted to a range of applications.

The purpose of a microprogram sequencer is to present an address to the control memory so that
a microinstruction may be read and executed. The next-address logic of the sequencer determines the
specific address source to be loaded into the control address register. The choice of the address
source is guided by the next-address information bits that the sequencer receives from the present
microinstruction. Commercial sequencers include within the unit an internal register stack used
for temporary storage of addresses during microprogram looping and subroutine calls. Some
sequencers provide an output register which can function as the address register for the
control memory.

To illustrate the internal structure of a typical microprogram sequencer we will show a partic
unit that is suitable for usc in the microprogram computer example developed in the preceding
section. The block diagram of the microprogram sequencer is shown in Fig. 4.7. The control memory

Scanned by CamScanner

e

Computer System Organization and Architecture

78 eeerrenseeensenssspasassnesaet eSS
is included in the diagram to show the interaction between the _mnn:nﬂwﬂmwmmh:moaﬂnmﬂomﬂﬂM_.”:an_
0 it. There are two multiplexers in the circuit. The first multip nun_.: oot cof
four sources and routes it into a control address register CAR. The second muitip’ ests the
vaiue of a sclected status bit and the result of the test is applied to an input _om_n. Q.SEr The output
from CAR provides the address for the control memory. The .832: of CAR is incremented and

broutine register SBR. The other three

applied to one of the multiplexer inputs and to the subr ot {
inputs to multiplexer number 1 come from the address field of the present microinstruction, from

the output of SBR, and from an external source that maps the instruction. Although the diagram
shows a single subroutine register, a typical sequencer will have a register m:..nx about four to eight
levels deep. In this way, a number of subroutines can be active at the same time. A push and pop
operation, in conjunction with a stack pointer, stores and retrieves the return address during the

call and return microinstructions.

The CD (condition) field of the microinstruction selects one of the status bits in the second
multiplexer. If the bit selected is cqual to 1, the T (test) variable is equal to 1; otherwise, it is equal to
0. The T values together with the two bits from the BR (branch) field go to an input logic circuit.
The input logic in a particular sequencer will determine the type of operations that are available in
the unit. Typical sequencer operations are: increment, branch or jump, call and return from
subroutine, load an external address, push or pop the stack, and other address sequencing
operations. With three inputs, the sequencer can provide up to eight address sequencing operations,
Some commercial sequencers have three or four inputs in addition to the T input and thus provide a
wider range of operations.

‘The input logic circuit in Fig. 4.7 has three inputs, Iy, I; and T, and three outputs, S, S;, and L.
Variables S, and S; select one of the source addresses for CAR. Variable L enables the load input in

External

(MAP)
| I
Bompw [T N 2T Load
7 logic So MUX-1 SBR

n|l.,. Mux2 |_Test ‘ _ Incrementer

S—| select

% Clock CAR

Control memory

Microps C
—_— 0 BR AD

Microprogram sequencer for a control memory,
Fig. 4.7

79

Micro Programmed Control

i Jecti iable i h in the multiplexcr. For
R. The binary values of the two sclcction variables determine the pat

MMDB_UF. with S; S, = 10, multiplexer input number 2 is selected and establishes a :uﬁmmﬁ EUG
from SBR to CAR. Note that cach of the four inputs as well as the output of MUX 1 contains a 7-bit

address.
The truth table for the input logic circuitis s
values in the BR field. The function listed in eac

hown in Table. InputsI1 and 10 are identical to the bit
h entry was defined in Table 4.5. The bit value for S1
d the path in the multiplexer that establishes the

stermined from the stated function an .
ww%cmwmmﬁww&ﬁ. ._:5 subroutine register is loaded 5..5 the incrementec value om CAR m:::m m
call microinstruciton (BR=01) provided that the status bit condition is mmmmmma (T=1). The trut
table can be used to obtain the simplified Boolean functions for the logic circuit;

s, =1,
So=Iilo+IT
L=I'1,T
Input Logic Truth Table for Microprogram Sequencer
BRField | Inputl, I T Hw._S.M.__ ..uw.“. SER
0o 0 0o 0 O 00 0
0o o0 o 0 1 0 1 0
0 0 o1 O 0 0 0
0o o 0o 1 1 0o 1 1
1 0 1 0 «x 1 0 0
1 1 0 0 x 11 0
Table 4.5

The circuit can be constructed with three AND gates, an OR gate, and an inverter.

Note that the incrementer circuit in the sequencer of Fig. is not a counter constructed with
flip-flops but rather a combinational circuit constructed with gates. A combinational circuit
incrementer can be designed by cascading a series of half-adder circuits. The output carry from
one stage must be a applied to the input of the next stage. One input in the first least significant stage
must be equal ot 1 to provide the increment-by-one operation.

EXERCISE

1. What is the difference between micrprogram and microprocessor?
2. Define the following :
(a) Microoperation (b) Microinstruction
(c) Microprogram (d) Microcode
3. Explain the difference between hardwired control and microprogrammed control.
4. Explain the concept of Control Memory.
5. Is it possible to design a microprocessor without a microprogram? Justify.
6. Is it possible to have a hardwaired control associated with a control memory?
7. Explain the different format for addressing sequencing.

Scanned by CamScanner

